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Fig. 1. Co-LOD generation for architectural models from raw real-world point clouds.

Managing the level-of-detail (LOD) in architectural models is crucial yet
challenging, particularly for effective representation and visualization of
buildings. Traditional approaches often fail to deliver controllable detail
alongside semantic consistency, especially when dealing with noisy and
inconsistent inputs. We address these limitations with Co-LOD, a new ap-
proach specifically designed for effective LOD management in architectural
modeling. Co-LOD employs shape co-analysis to standardize geometric
structures across multiple buildings, facilitating the progressive and consis-
tent generation of LODs. This method allows for precise detailing in both
individual models and model collections, ensuring semantic integrity. Ex-
tensive experiments demonstrate that Co-LOD effectively applies accurate
LOD across a variety of architectural inputs, consistently delivering superior
detail and quality in LOD representations.
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1 INTRODUCTION
In the realm of architectural model reconstruction, the creation of
structural details at various levels is pivotal for a range of applica-
tions such as urban planning, autonomous driving, virtual reality,
and digital entertainment. As the pioneeringwork, CityGML [Gröger
and Plümer 2012] outlines that a 3D digital building can be depicted
through multiple levels-of-detail (LODs), with each level providing
progressively more detailed structures. This forms the basis of LOD
generation with two significant challenges. Firstly, the intricate and
diverse geometric structures of architectural models make it difficult
to robustly control the generation of LODs. Secondly, maintaining
semantic consistency within the same LOD level across different
building models is a demanding task.

Existing approaches focusing on the LOD generation of building
models have been attempting to address the aforementioned two
challenges [Bauchet and Lafarge 2020; Gao et al. 2022; Verdie et al.
2015]. To ensure semantic consistency across different models, they
use predefined rules to control LOD generation. However, these
rules often falter when dealing with complex geometric structures
and non-standard inputs. To overcome the limitations of external
rules, some methods utilize visual error control and geometric con-
straints to guide the LOD generation. The aim of these methods is to
achieve a more universally applicable and robust reconstruction pro-
cess that also maintains semantic consistency. Despite these efforts,
consistently producing uniform LODs from diverse and intricate
inputs remains challenging. The success of maintaining semantic
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consistency heavily relies on the quality of the input architectural
models. At present, there is a lack of an effective mechanism for con-
trolling LOD generation that can simultaneously meet the demands
for robustness and semantic consistency.

In response to these challenges, we introduce Co-LOD, a novel ap-
proach that utilizes a co-analysis strategy. Co-LOD operates under
the assumption that architectural models contain semanticallymean-
ingful details at different hierarchical levels, which are discernible
through patterns of repetitiveness and correlation. By conducting a
co-analysis of these repetitive and autocorrelated geometric struc-
tures across different input models, we can more precisely control
the different LOD layers. Co-LOD harnesses the structural asso-
ciation relationships inherent in architectural models to develop
correlation rules for LODs, thereby achieving semantic consistency.

The process encompasses two primary stages: initially, raw inputs
(e.g.point clouds or triangle meshes) are segmented into structural
segments to identify the main structure and categorize geometric
details at varying levels. Subsequently, we formulate an energy func-
tion for these segments, which guides the LOD generation process
while ensuring semantic consistency. When applied to a collection
of building models, Co-LOD enhances the robustness against in-
dividual sample variations, offering an effective way to manage
LOD generation. It strikes a balanced chord between robustness and
semantic consistency, inheriting the advantages of structured recon-
struction with concise and clear mesh results. Co-LOD is pioneering
in its use of co-analysis to implement precise LOD controlling, an
example of which can be seen in Fig. 1. The key contributions of
this approach are summarized as follows:

• Innovative Co-Analysis Approach. Co-LOD represents a
novel approach in integrating co-analysis for Level-of-Detail
(LOD) generation. This initiative is the first to employ a build-
ing set-based cross-analysis specifically tailored for LOD gen-
eration tasks. Our method opens new research avenues, espe-
cially in achieving semantic consistency in the representation
and optimization of architectural models.
• Structural Segments Generation. Our methodology fea-
tures a meticulously designed segmentation process, capable
of handling a wide array of architectural inputs and produc-
ing uniform structural segments. This approach excels in
handling complex geometric structures and minimizes depen-
dency on specific parameters, thus significantly enhancing
the robustness and adaptability for processing raw inputs.
• Joint Structural Analysis. To augment our co-analysis, we
have developed a comprehensive segment-based quantitative
analysis method, tailored for architectural models. It estab-
lishes rules based on the hierarchy and similarity of structural
details, which supports precise LOD control across LOD lay-
ers. This method effectively balances maintaining semantic
consistency with ensuring robustness in LOD generation.

2 RELATED WORK
Low-Poly Reconstruction. To achieve structural model from ar-
chitectural point clouds, some researchers develop low-poly recon-
struction methods that are used to generate initial LOD information.
Mehra et al. [2009] utilized characteristic curves and contours to

establish building blocks for low-poly representation. Yumer and
Kara [2012] implemented consistent abstraction of man-made mod-
els based on subvolumes. Lafarge and Alliez [2013] proposed a
structure-preserving approach to detect planar components and
construct polygonal mesh. Li et al. [2016] presented a fully auto-
matic approach for reconstructing urban scene from point samples.
It implemented plane hypothesis and generated candidate boxes
to approximate geometry structures of buildings. With the similar
technical route, they improved the framework [Nan and Wonka
2017] for reconstructing lightweight polygonal surfaces from point
clouds. Kelly et al. [2017] proposed a high-quality structural mod-
eling method for city blocks, which formulates a binary integer
program to produce semantic models with associated surface el-
ements. Bauchet and Lafarge [2020] designed an efficient shape
assembling mechanism to reconstruct watertight polygonal meshes
from point clouds. It is capable of accurately representing piece-
wise planar structures while also approximating freeform objects
from incomplete geometric structures. Fang et al. [2018] proposed a
structural method to detect planar shapes from 3D data. Then, they
designed an hybrid approach [Fang and Lafarge 2020] to succes-
sively connects and slices planes for polygonal mesh reconstruction.
Such solutions focus on individual model reconstruction without
semantic consistency and precise LOD control.
LODGeneration.A series of detailed re-factoring methods are pro-
posed to generate LODs, which can be concluded into two groups:
geometric-based and human observation-based. Methods of first
group implement LOD generation based on geometric feature anal-
ysis. Some of them [Chen et al. 2023; Gao et al. 2022; Garland
and Heckbert 1997; Hoppe 1996; Li and Nan 2021; Lindstrom 2000;
Lindstrom and Turk 2000] utilized edge collapse strategy to con-
trol LOD with geometric error optimization. Inspired by marching
cubes [Lorensen and Cline 1987], some solutions [Takikawa et al.
2022, 2021] generated LOD according to implicit surface estima-
tion. Such methods can handle most 3D shape for LOD genera-
tion. However, they lack semantic perception abilities that may
produce structural defects or inconsistencies in architectural mod-
els. Another group utilize human observations to improve ability
of semantic-aware in LOD generation. Verdie et al. [2015] learned
geometric attributes and semantic rules to extract facades, roofs,
and superstructures. Based on CityGML’s [Gröger and Plümer 2012]
requirements, such elements are allocated to suitable levels for LOD
generation. Huang et al. [2023] classified architectural point clouds
into floor, wall, ceiling, and window components with similar pur-
pose. Such methods rely on manually designed rules that take some
instability factors for individual building models.
Structural Segmentation.Another important technical route is to
utilize segmented components to guide LOD reconstruction. Initial
methods for architectural segmentation utilized shallow pipelines
incorporating hand-crafted point descriptors and rules [Lin et al.
2013; Martinović et al. 2015; Toshev et al. 2010]. To improve the
accuracy for repetitive structural segmentation, Demir et al. [2015b]
formulated a weighted minimum set to implement segment op-
timization. Kobyshev et al. [2016] leveraged symmetry for archi-
tectural structural segmentation. Demir et al. [2015a] proposed a
user-assisted segmentation method to further reduce ambiguous
structures. Recently, Selvaraju et al. [2021] introduced a BuildingNet
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Fig. 2. Overview of Co-LOD workflow, which contains two main modules. The first module involves detecting primary planes and aggregating them to form
structural segments from raw inputs. The second module quantitatively measures the similarity of these segments and clusters them to define LOD layers,
a process akin to joint structural analysis. Together, these modules enable Co-LOD to effectively perform co-analysis for controlled LOD generation with
semantic consistency.

dataset that is used to support learning-based schemes. It is use-
ful to define accurate segmentation or LOD component. However,
such methods don’t consider the relationships between different
segmentations which limit the performance for accurate LOD con-
trolling and semantic analysis. In non-architectural segmentation
domains, some approaches [Golovinskiy and Funkhouser 2009; Hu
et al. 2012; Huang et al. 2011; Sidi et al. 2011; Wang et al. 2012; Xu
et al. 2010] employed co-analysis to improve the accuracy of seg-
menting components. They initially employed mesh segmentation
technique [Golovinskiy and Funkhouser 2008; Katz and Tal 2003;
Shapira et al. 2008] to over-segment the input model, followed by
feature extraction and clustering to achieve a consistent structural
segmentation. Our approach draws inspiration from this scheme and
proposes the prior work to implement co-analysis for architectural
LOD generation.

3 METHODOLOGY
Overview. Co-LOD is designed to facilitate LOD generation for
architectural models with controllable structural accuracy and se-
mantic consistency. Specifically, Co-LOD takes a group of architec-
tural models as input and generates LOD representations for these
models that adhere to the following criteria:

i) Each input architecturalmodel corresponds to an entitywithin
each layer;

ii) Architectural models at the same layer exhibit LOD-based
semantic consistency;

iii) Structures become progressively enriched with the increase
in LOD;

iv) LODs are represented by watertight polygonal meshes.

Essentially, Co-LOD achieves LOD generation that meets the spec-
ified criteria through three core steps, as illustrated in Fig. 2. The
first stage involves structural segmentation to identify basic compo-
nents. This is followed by a joint structural analysis that conducts
a co-analysis on these segments, organizing them into LOD layers
with semantic consistency. Finally, LODs represented by polygonal
meshes are extracted from these layered segments. The following
sections will delve into the implementation details.

3.1 Structural Segments Generation
The importance of structural segmentation in LOD generation is
well-recognized. Existing methods, however, often rely on low-level
primitives for LOD generation, limiting their capacity to generate
models at different levels-of-detail. To overcome this limitation,
we propose a novel segmentation scheme aimed at grouping in-
terrelated planes to obtain meaningful structural segments. It be-
gins with the extraction of primary planes from a raw point cloud
or mesh, which aligns with the initial steps of traditional meth-
ods [Bauchet and Lafarge 2020; Nan and Wonka 2017]. The scheme
then progresses by using the detected planes to form structural
segments, serving as the foundation for subsequent LOD control.

AlcoveAlcove ClosedClosed

A challenge in perform-
ing structural segmenta-
tion on architectural mod-
els is the presence of two
distinct types of struc-
tures: alcove and closed
(see right). As outlined in Algorithm 1, we address this challenge
by initially inverting planes smaller than Aϵ to convert alcoves into

ACM Trans. Graph., Vol. 43, No. 6, Article 1. Publication date: December 2024.



1:4 • R. Zhang, S. Pan, C. Lv, M. Gong, and H, Huang

Input Primary Plane
Detection

Bbox and
Voxel Regions

z
x y

Fig. 3. Visualization of primary planes and Bbox with voxel samples.

closed structures for extraction, and then utilizing the remaining
planes for closed structure extraction. These generated segments
effectively facilitate subsequent LOD-based analysis.

V

Inside
V

Outside

Plane pPlane p

Initial Segmentation. To initiate struc-
tural segmentation, the process begins by
detecting primary planes through region
growing, using the α shape [Bernardini
and Bajaj 1997] to define the region for
each detected plane. Once these planes are
identified, a voxel-based visibility analysis
is conducted to group strongly correlated
planes into plane-groups.

The procedure is outlined as follows: 1) Bounding Box Sampling:
As illustrated in Fig. 3, we start by computing a bounding box (Bbox)
for the detected planes and divide it uniformly into ns × ns × ns
voxels, each with a sampled centroid. 2) Ray Shooting: From each
voxel centroid v , nr rays are emitted, uniformly sampled on the XY
plane. These rays are used to determine the planes surrounding the
voxel. Specifically, the first plane intersected by a ray is denoted as p.
Ifv is insidep (assuming the normal of the plane points outward), the
interaction is counted as a valid hit. 3) Visibility Analysis: For each
voxel v , the visibility information regarding the planes is recorded
in an np -dimensional vector Hitlistv , where np is the number of
planes. Each entry in Hitlistv records the number of valid hits from
all rays emitted from voxelv . 4) Voxel Validation: A voxel with valid
hits less than half of the total emitted rays (nr ) suggests that the
voxel might be outside of the building, leading to its invalidation.
5) Grouping Planes into Plane-Groups: For each valid voxel v , all
planes with non-zero entries in Hitlistv form a plane-group. This
group represents a subset of planes that define the characteristics
of the space occupied v , encapsulating essential spatial features for
further architectural analysis.
By following these steps, the segmentation yields groups of in-

terrelated planes, termed plane-groups, which are foundational for
subsequent levels-of-detail analysis in architectural modeling.

Segments Aggregation. Once the plane-groups are obtained, we
further aggregate them to generate structural segments as depicted
in Fig. 4. Each segment represents a collection of planes surrounding

AA
AA

BB BB

CC CCDD

DD

EE
EE

........

Fig. 4. An instance of structural segments aggregation. Plane-groups A, B,
C, D, and E are concentrated based on related voxel regions. According to
the overlap in Hitlist , interrelated planes (blue, cyan, and brown lines in
the upper right corner) is detected to aggregate structures (A, B), then a
structural segment (corresponds to the pale purple area) is generated.

a standard component composed of multiple voxels. The aggrega-
tion mainly involves organizing the plane-groups to obtain more
compact and concise information, corresponding to the architec-
tural LOD. Let дa and дb represent the two plane-groups enclosing
voxels Va and Vb , respectively. The total valid hits of a plane-group
is calculated by

hSum(д,V ) =
∑
v ∈V

∑
p∈д

Hitlistv [p], (1)

where д represents a plane-group, p is a plane belong to д, V is the
related voxels. Then, the pre-condition for merging can be written
as hSum(дa ∩дb ,Va ) > 0.5×hSum(дa ,Va ) and hSum(дa ∩дb ,Vb ) >
0.5 × hSum(дb ,Vb ). It means that the merging of two plane-groups
should satisfy a preset overlapping ratio. We iteratively assess the
potential merging of plane-groups in pairs and update the merged
plane-group as дab = дa

⋃
дb , continuing this process until no fur-

ther pairs are available for merging. A merging queue is maintained
to keep current segments. Only the adjacent segments are checked in
the queue which avoid exhaustive searching. Finally, we achieve the
merged plane-groups to be structural segments. It should be noticed
that a single plane could be part of multiple structural segments. To
achieve disjointed segmentation results, we assign each plane to the
structural segment with largest validly hit number. These structural
segments serve as primitives for subsequent co-analysis.

3.2 Joint Structural Analysis
Based on the structural segments, Co-LOD performs co-analysis
to ensure semantic consistency in LOD generation across different
buildings. To implement the scheme of joint structural analysis, we
have designed a two-step method. In the first phase, we identify seg-
ments belong to LOD0 through joint analysis of structural segments.
It is used to define the initial main structure of the building. Next,
we employ spectral clustering to jointly analyze segments beyond
LOD0, assigning them to different layers to generate LODs. In this
way, Co-LOD achieves progressive LOD generation layer by layer.
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ALGORITHM 1: Structural Segments Generation
Input: Building model, denoted asm
Output: A set of segments ofm, denoted as S

1 P ← RegionGrowing(m);
2 // Handle alcove structures
3 Reverse the orientation of planes p ∈ P with an area less than Aϵ
4 G ← InitialSegmentation(P )
5 Sa ← SegmentsAggregating(G )
6 // Handle closed structures
7 Recover the orientation for all planes p ∈ P
8 for p ∈ Sa do
9 P ← P/{p }

10 end
11 G ← InitialSegmentation(P )
12 Sc ← SegmentsAggregating(G )
13 S ← Sa ∪ Sc

Initial LOD0 Generation. Firstly, we provide the implementa-
tion of LOD0 generation for initial main structure of building repre-
sentation. A reasonable LOD0 definition should satisfy following
requirements: corresponds to the overall shape, as concise as pos-
sible, and keeps semantic consistency. Based on the requirements,
we formulate the objective function using three terms, which quan-
titatively evaluate shape fidelity (fr ), simplicity (fs ), and semantic
consistency (fco ), respectively. That is:

E0 =
n∑
i=0

(
fr (Mi ) + β fs (Mi ) + λ fco (Mi )

)
,

s.t. fr (Mi ) > 0.8 ∀i = 1, 2, ...,n,
(2)

where n represents the number of buildings for co-analysis, Ii repre-
sents the set of structural segments associated with the i-th building,
Mi represents the set of structural segments identified as the LOD0
of Ii , β and λ are two parameters to tune the influence of fs and
fco . Higher E0 score corresponds to a better LOD0 structure that
balances the three requirements. It can be modeled as a binary lin-
ear programming problem, which determines whether a segment
belongs to LOD0.

Intersection over Union (IoU) betweenM and I is used to define
the shape fidelity term fr . It can be computed as

fr (M) = IoU (M, I ) = IoU (P(M), P(I )), (3)

where P(X ) represents voxel centroids enclosed by the structural
segments collection X . To satisfy the second requirement of concise
representation, the simplicity term fs is introduced by constraining
the area of planes, computed as

fs (M) = −area(M)/area(I ), (4)

where area(M) represents the total area of planes contained in
M , area(I ) represents the total area of planes contained in I . By
maximizing the term, geometric structures of LOD0 can be greatly
simplified.

To address the semantic consistency, we first define the measure-
ment between two segments, represented as

dis(s, s ′) = η∥d2(norm(s)) − d2(norm(s ′))∥2 + scaled (s, s ′), (5)

Anisotropic scaling

Principal axes

D2 descriptor

Vector of eigenvalues

......

Segments set

Segment

Fig. 5. Illustration of segment-based similarity. With the D2 descriptor-
based measurement and principal axes-based eigenvalue analysis, different
segments can be quantitative compared, which considers shape and scale
differences at the same time.

scaled = ∥ve (s) −ve (s
′)∥/(∥ve (s)∥ + ∥ve (s

′)∥), (6)
where dis is a function used to measure the distance between seg-
ments s and s ′. A smaller distance implies a higher similarity be-
tween the two segments. We define the distance with two compo-
nents, shape distance and scale distance scaled . The norm(s) rep-
resents the process of making s isotropic through anisotropic scal-
ing [Kazhdan et al. 2004], d2(x) denotes the D2 descriptor [Osada
et al. 2002] for x , and if we denoteve (s) as the vector of principal
eigenvalues of the covariance matrix of s , then scaled is defined
as the normalization of L1-distance based onve (s) andve (s ′). For
intuitively illustrate such similarity, we show an instance in Fig. 5.
According to the segment-based similarity, we perform a cross-
analysis of segments on different buildings, formulated as

Disset (s, S) = min
s ′∈S

dis(s, s ′), (7)

Simco (s, S) = e−Disset (s,S ), (8)
whereDisset represents the distance between s and a segment group
S , Simco represents the cross similarity based on Disset , it is im-
proved by logarithmic operation for discrimination (Fig. 6). Once the
cross similarity is defined, the consistency term fco can be computed.
It considers the mutual similarities between different segments ac-
cording to the definition of LOD [Gröger and Plümer 2012] and
real-life scenario (segments beyond LOD0 often comprise elements
such as windows, fences, rooftop water tanks, air conditioning units,
and other components that are not individually designed). To for-
mulate fco , we encourage segments that match well with others to
be removed from LOD0 since they represent repetitive structures.
In practice, fco is defined as

fco (M) =
∑
s

∑
M ′, I ′

Simco (s, I
′ −M ′),

s ∈ I −M,M ′ ∈ M −M, I ′ ∈ I − I ,

(9)

where M and M are collections of LOD0-based segments corre-
sponding to all architectural models and current model, I and I are
collections of segments from all architectural models and current
model. I −M represents segments beyond LOD0 of current model.
By using set operations, we compare segments in certain range by
cross similarity Simco for co-analysis of LOD0.

ACM Trans. Graph., Vol. 43, No. 6, Article 1. Publication date: December 2024.



1:6 • R. Zhang, S. Pan, C. Lv, M. Gong, and H, Huang

Similarity Map

Fig. 6. Structural segment-based similarity map byDisset (left) and Simco
(right). The latter one significantly distinguishes the difference between
segments.

Spectral Clustering. Through the optimization of E0 in Eq. (2),
we obtained an accurate LOD0 architectural model. To further assign
more detailed segments into their appropriate LODs, we employed
spectral clustering to simultaneously analyze these segments. Based
on the cross similarity Simco , we constructed the similarity ma-
trix Ms to measure the similarity between each pair of segments.
Subsequently, we compute the normalized Laplacian matrix Lnorm ,
represented as:

Lnorm = M
−1/2
D (MD −Ms )M

−1/2
D ,MDii =

∑
j
Msi j , (10)

where Ms is the similarity matrix constructed by cross similarity
Simco , Msi j = Simco (si , sj ), MD is the related diagonal matrix. In-
spired by spectral clustering [Pothen et al. 1990], we use the eigen-
vectors corresponding to the first ln -1 smallest eigenvalues of Lnorm
as features for segments and cluster them by k-means method. Then,
such segments are clustered into ln -1 classes, corresponding to ln -1
different LOD levels, ln corresponds to the required LOD layers. In
practice, for datasets featuring finely scanned models, we typically
set ln = 3 as shown in Fig. 8 and Fig. 23. Conversely, for collections
with roughly scanned models, we set ln = 2, as shown in Fig. 1
and Fig. 22. Clusters with smaller average volume are assigned to
higher LOD levels, indicating that they represent finer structures.
A higher layer of LOD is formed by the planes corresponding to
segments smaller than or equal to the current LOD layer with ad-
jacent planes that don’t belong to any segments. In this way, we
utilize such planes to construct more refined and comprehensive
polygonal mesh.

3.3 Polygonal Mesh Extraction
To achieve the desired polygonal meshes, we utilize a space parti-
tioning approach followed by convex hull inside/outside calibration
to extract polygonal meshes based on layered segments. Specifi-
cally, planes belonging to specific LOD layers undergo Binary Space
Partitioning [Fuchs et al. 1980] to divide the architectural model’s
bounding box into convex hulls. Subsequently, we determine the
interior or exterior attributes of each convex hull based on whether

Structural
Segments

Partition LOD
Models

LO
D
0

LO
D
1

LO
D
2

Fig. 7. Illustration of polygonal mesh extraction with different LOD layers.
By partitioning scheme with layered structural segments, accurate LOD
generation can be implemented.

more than half of the rays see the convex hull as interior. That is:

In(C) =

{
1,hv (C) > 0.5nr
0,other , (11)

where In(C) is the index of interior (In(C) = 1) or exterior (In(C) = 0)
attribute, C is the centroid of the related convex hull that also can
be regarded as a sub-space, hv (C) is the total valid hit count from
nr rays uniformly emitted from C . Based on all interior convex
hulls, the largest internally connected component forms the water-
tight space, which produces the polygonal mesh for current layer
of LOD. An instance is shown in Fig. 7. Unlike traditional methods
that directly use detected planes for polygonal mesh reconstruction,
Co-LOD utilizes segment co-analysis to guide clustering and concen-
trating related planes, which ensure precise and controllable LOD
generation with semantic consistency. In experiments, we illustrate
the performance of Co-LOD in practical urban scenes.

4 EXPERIMENTAL RESULTS
We evaluate the performance of Co-LOD in the context of urban
scene-based architectural LOD generation tasks. All experiments
were conducted on a machine equipped with an Intel i9-13900K
processor, 128GB RAM, and an RTX4090 graphics card, running
Windows 10 and Visual Studio 2022. For linear algebra operations,
basic geometry processing, and numerical optimization, we utilized
public libraries such as Eigen [Guennebaud et al. 2010], CGAL [Fabri
et al. 2000], and LPSolve. Comparative analysis between Co-LOD
and several classical solutions, as well as single building process-
ing and ablation studies, are used to comprehensively assess the
effectiveness of Co-LOD.
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Fig. 8. LOD generation results for Composite Scene, demonstrating Co-LOD’s ability to handle both diverse styles and delicate structures.
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Fig. 9. Comparisons with QEM and RobustLowPoly for LOD generation. Co-LOD achieves better balance between simplicity (#F: face number) and accuracy
(HD: Hausdroff distance between the raw input and related reconstruction result).

Table 1. Statistics of input scenes, including V : average vertices, F average
faces, C : average connected components, I : average self-intersections, P :
average detected planes, S : average segments,T : average runtime,M : model
numbers.

Scenes V F C I P S T M

Metropolis 199k 271k 5.9k 363k 2476 22 229.8s 54
Town 148k 288k 1k 15k 1378 13 75.6s 27
Research Center 371k 543k 7k 971k 3127 72 776.9s 14
Composite Scene 588k 867k 16k 964k 3468 93 987.8s 13
European City 59k 86k 2.3k 96k 735 67 522.7s 10
Campus 56k 70k 3.6k 125k 501 22 144.8s 37
Suburbia 1k 2k 1 3 18 3 56.7s 266

Datasets. To thoroughly evaluate the effectiveness of ourmethod,
we investigated building datasets published post-2020, including
Toronto-3D [Tan et al. 2020], SensatUrban [Hu et al. 2022], SUM [Gao
et al. 2021], STPLS3D [Chen et al. 2022], InstanceBuilding [Xu et al.
2021], and UrbanBIS [Yang et al. 2023]. We conducted experiments
on the datasets with normal information, totaling 421 architec-
tural data samples of various styles and captured from diverse loca-
tions. These models were reconstructed using UAV photogrammetry,
which introduced inherent noise and incomplete information. We
organized the samples into seven scenes. Following the approach in
LowPoly [Gao et al. 2022], we compiled the statistics for the scenes
used in Table 1. As Co-LOD takes a collection of building as input,
the seven building scenes are individually fed into the pipeline for
co-analysis.

Fig. 10. Comparisons with LowPoly for LOD generation. LowPoly fails to
keep some main structures. Co-LOD achieves more concise and clear main
structures.
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Fig. 11. Comparisons with LowPoly for LOD generation using Research Center. The zoomed-in views highlight the notable inconsistencies in the amount of
details used by LowPoly to model different buildings.

Table 2. Statistics and evaluations of different LOD generation methods for related LOD layers. Since PolyFit can only handle buildings from D7 successfully,
we separately list quantitative data in D7. Other results are reported based on all scenes. #V: vertices, #F: triangles, #P: polygons, mean: average value of
related metric, sd: standard deviation of related metric. For statistic analysis of success rate rs , a failure case means that if the method cannot generate valid
output or the running time exceeds one hour. I-LOD and S-LOD present user study outcomes for individual buildings and scenes, respectively. The values
represent the percentage each method was selected as the best.

LOD Layer Method #V #F #P rs
LFD ↓ HD ↓ I-LOD ↑ S-LOD ↑mean sd mean sd

LOD0 (D7) PolyFit 65 51 9 42% 6757.7 2886.0 0.110 0.060 —— ——
Ours 14 22 9 42% 5063.8 1875.6 0.035 0.025 —— ——

LOD0

KSR 232 427 124 47.8% 5963.1 4126.3 0.048 0.053 10.9% 8.7%
QEM 189 125 113 100% 5388.7 2577.4 0.037 0.028 3.2% 4.7%

RobustLowPoly 117 254 250 100% 7146.5 4349.8 0.097 0.069 11.7% 5.3%
Ours 66 125 40 100% 4507 1785.7 0.025 0.024 77.3% 81.3%

LOD1

KSR 1010 1932 681 98.8% 3793.2 1429.4 0.010 0.011 10.9% 8.7%
LowPoly 542 1046 645 100% 3899.5 1235.5 0.012 0.006 —— ——
QEM 5159 3753 3584 100% 3889.2 4075.2 0.005 0.005 3.2% 4.7%

RobustLowPoly 1865 3750 3594 100% 4961.7 3770.9 0.073 0.068 11.7% 5.3%
Ours 1888 3755 1352 100% 3626.5 1481.2 0.005 0.004 77.3% 81.3%

LOD2

KSR 6648 12898 7723 70.0% 3026.3 1103.3 0.007 0.013 10.9% 8.7%
QEM 53629 31501 31239 100% 9892 12607.1 0.002 0.001 3.2% 4.7%

RobustLowPoly 15719 31535 29982 100% 1975.4 405.7 0.001 0.001 11.7% 5.3%
Ours 15811 31535 14516 100% 2237.2 432.4 0.001 0.001 77.3% 81.3%

Metrics & Configurations. To evaluate the performance of the
LOD generation methods, we employ Hausdorff distance (HD) and
Light Field distance (LFD) [Chen et al. 2003] to measure geometric
and visual errors. We also report success rate (rs ) and user study
at both individual and scene levels to reveal the practicality. For
parameter configurations of Co-LOD, we set ns = 150, nr = 100,
Aϵ = 80m2, β = 0.3, λ = 0.4, η = 4.0 as the default specification. The
rationality of parameter selection are discussed in the subsequent
sections. For the plane detection, we employ the Region Growing
algorithm [Rabbani et al. 2006] provided by CGAL. The distance
and angle-based thresholds are set to 0.2m and 30°, respectively,
and the minimum region size requiring 20 inside points. The results
generated using Co-LOD for some instances are shown in Fig. 8.

4.1 Comparisons
To validate the effectiveness of Co-LOD, we conducted comparisons
with several mainstream approaches, including QEM [Garland and
Heckbert 1997], RobustLowPoly [Chen et al. 2023], LowPoly [Gao
et al. 2022], NeuralLOD [Takikawa et al. 2021], PolyFit [Nan and
Wonka 2017], and KSR [Bauchet and Lafarge 2020]. These compar-
isons were based on the previously mentioned metrics and included
user studies at both individual and scene levels. Additionally, we
presented the generated LOD models visually to demonstrate the
hierarchical consistency advantage of Co-LOD.

Comparisons with QEM and RobustLowPoly. We conducted
comparative experiments using QEM, RobustLowPoly, and Co-LOD,
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Fig. 12. Comparisons with NeuralLOD. The face number of NeuralLOD-based results are huge even in models with LOD0 layer. Co-LOD effectively reduces
the face number while maintaining accurate geometric structures in different LOD layers.

Our LOD0 KSR Mn=2000 Our LOD1 KSR Mn=500

Fig. 13. Comparisons with Alternative Pipeline. With the parameter chang-
ing, KSR can generate different levels of geometric structures. However, the
main structure can not be guaranteed which poses significant drawback for
geometric and semantic consistency.

focusing on geometric and visual error optimization. Due to limita-
tions in the ability of the comparisonmethods to implement accurate
LOD control, we simplified the input facets to simulate the function
of Co-LOD generation for a fair assessment. As demonstrated in
Fig. 9, QEM demonstrates limitations in preserving architectural in-
tegrity, particularly struggling to retain sharp features during LOD
generation, which results in poor visual effects. RobustLowPoly,
while preserving basic geometric details more effectively, still falls
short in ensuring the consistency of building structures. Addition-
ally, it lacks the capability to provide structural completion and to
smooth noisy planes. Moreover, both methods struggle to maintain
the main structure when simplified to a very low number of faces,
leading to lower geometric and visual fidelity and inconsistencies
within the LOD0 layer.

Benefited from the co-analysis, Co-LOD excels in maintaining
structural integrity and achieving better semantic consistency with
fewer planes. These advantages are evidenced by quantitative eval-
uations of HD and LFD, as detailed in Table 2.

Comparisons with LowPoly. LowPoly can construct the main
structure of an architectural model, making it a suitable benchmark
for evaluating the LOD generation capabilities of Co-LOD. However,
it has some limitations in maintaining semantic consistency within
the LOD layer, as shown in Fig. 10 and Fig. 11. Different models
exhibit varying levels of simplification, and repetitive structures
are not consistently removed. In contrast, Co-LOD can generate a
more concise and uniform LOD0 layer across various architectural
models. For LOD1 generation shown in Fig. 10, Co-LOD produces
more accurate geometric structures and better semantic consistency.
Further comprehensive results are reported in Table 2.

Comparisons with NeuralLOD. The advent of deep implicit
surface reconstruction has brought new possibilities to the genera-
tion of various LOD layers for architectural models, as exemplified
by NeuralLOD. In Fig. 12, we present a comparison of architectural
models generated by both NeuralLOD and Co-LOD, across different
LOD layers. NeuralLOD, particularly at lower LOD layers, tends
to smooth out geometric details. While this is consistent with the
principles of LOD generation, the numbers of faces needed to rep-
resent these smooth surfaces are significantly larger than the ones
needed by Co-LOD. In addition, NeuralLOD does not operate as a
structured reconstruction scheme and lacks the capability to extract
primary planes. Consequently, even at higher LOD layers, Co-LOD
demonstrates a significant advantage in terms of simplification,
while simultaneously maintaining the accuracy of the geometric
structures. This comparison underscores the efficiency and precision
of Co-LOD in generating LOD layers for architectural models.

Comparisons with PolyFit and KSR. For architectural model
reconstruction, classical methods [Bauchet and Lafarge 2020; Chauve
et al. 2010; Nan and Wonka 2017] focus on detecting primary planes
to generate polygonal models. While these methods are not tailored
for precise LOD control, they offer some level of accuracy adjust-
ment in reconstructed buildings through parameter tuning. The
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=200m2Input

Fig. 14. The impact of Aϵ on alcove structure detection. While a larger Aϵ facilitates the detection of larger alcove structures, excessively increasing Aϵ to
200m2 can impede detection by causing the inversion of large planes.
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Fig. 15. Relationship between ns and computational cost, benchmarked
at ns = 300 for SDR calculations. Increasing ns improves detection of fine
structures but incurs a non-linear rise in computational costs.

key parameter is the minimum number of inliers (Mn), which influ-
ences the scale of detected planes by dictating the minimum points
needed for a valid plane. We use KSR [Bauchet and Lafarge 2020] as
a baseline method and adjust theMn to simulate LOD control. The
reconstructed architectural models shown in Fig. 13 illustrate that
different Mn values for KSR can indeed control geometric details.
However, it cannot ensure the integrity of themain structure. Precise
geometric details obtained with lower Mn are inconsistent. Con-
versely, Co-LOD effectively addresses the issue, achieving accurate
and uniform LODs. Furthermore, Table 2 quantitatively demon-
strates that Co-LOD achieves higher modeling accuracy at similar
complexities and handles complex inputs more effectively.

User Study. We conducted a user study utilizing all scenes and
randomly selected 30 individual models, to evaluate the quality of
LOD models generated by various methods at both the individual
model and scene levels. This study involved 108 participants who
chose the best set of LODs from four groups, each provided by
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Fig. 16. Impact of the shape-scale balance weight η on segment similarity:
Increasing η shifts the metric emphasis from scale to shape similarity.

a different method, based on their balance between fidelity and
simplicity. Detailed results are presented in Table 2. Our method
was preferred for both individual buildings and scenes, receiving
approval ratings of 77.3% and 81.3%, respectively. This confirms the
effectiveness of our approach in generating LOD models that are
both geometrically and visually accurate, as well as aesthetically
appealing. For visualizations of the comparison results, please refer
to our supplementary materials.

Co-LOD for Single Building. By default, Co-LOD is used to
control LOD generation in scenes with multiple buildings while
maintaining semantic consistency. When processing single build-
ings, Co-LOD can benefit from incorporating an additional database
to build prior knowledge. To demonstrate this, we utilized Com-
posite Scene to compile a database consisting of 90 segments with
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With co-analysis

Without co-analysis

Fig. 17. Ablation study on the impact of consistency term fco on LOD0 generation. The top row shows results with the term, where LOD0 exhibits concise
and consistent geometric structures. In contrast, the bottom row, without fco , displays irregular geometric structures that introduce disturbances.

β=0.3

β=0.4 β=1.0 u=1.3

β

β=1.3

=1.6With co-analysis

Fig. 18. Evaluation of shape term fr and simplicity term fs in Co-LOD without function of fco . Tuning the ratio between the two terms cannot effectively
generate a desired LOD0 model, underscoring the indispensable role of co-analysis in Co-LOD controlling.

various shapes. The experiment, conducted using Campus, assessed
the effectiveness of co-analysis when supplemented with additional
database knowledge. Table 3 demonstrates that using a database
significantly reduces calculation time, primarily by speeding up
the co-analysis stage. However, a downside is that non-primary
structures not matched within the constructed database may be
erroneously assigned to lower LOD layers, resulting in insufficient
simplification. Further details of this implementation can be found
in the supplementary materials.

Efficiency. Across the tested dataset, Co-LOD takes an average
of 151.6s to process an input, including stages for structural seg-
ment generation (78.7s), co-analysis (51.8s), and polygonal mesh
extraction (21.1s). In contrast, comparative methods include KSR,
PolyFit, LowPoly, QEM, and RobustLowPoly take 87.3s, 5.1s, 513.3s,
2.1s and 603.2s, respectively. Overall, Co-LOD achieves a better bal-
ance in terms of computational efficiency, LOD control, semantic
consistency, and practicality.

Table 3. Statistics of Co-LOD in different LOD generation tasks on Campus.
S: single building analysis, Co: co-analysis based on the scene, superscript
numbers: LOD layer, #F: triangles, #V: vertices, Ts : segments generation
time cost, Tc : co-analysis time cost, Tp : polygonal mesh extraction time
cost.

Task #F #V HD LFD Ts Tc Tp
S0 421 188 0.023 3633 2827.1s 167.3s 534.6s
S1 6898 3510 0.001 1873
Co0 346 179 0.021 3656 2834.6s 1972.2s 549.3s
Co1 6775 3417 0.001 1889

4.2 Ablation & Limitations
Co-LOD delivers accurate LOD generation with consistency for
architectural models. Given the multiple control parameters and
optimization elements within Co-LOD, we conducted an ablation
study to elucidate their impacts and discuss some limitations.
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Fig. 19. Errors from plane-based surface approximation. Reducing the angle-based threshold (θ ) mitigates these errors but increases computational time (T).
Deeper reds in the point cloud signify higher reconstruction errors.

Table 4. Statistical data for varying nr values: HD and LFD between the
original models and related highest LOD layer models, Ts : structural seg-
ment generation time cost, Tp : polygonal mesh extraction time cost, SDR:
calculated using nr = 200 as the benchmark.

Values of nr
HD LFD Ts Tp SDRmean sd

5 0.236 0.12 5305 39.3s 2.7s 2.3%
10 0.103 0.036 3803.2 42.5s 2.9s 67.8%
30 0.003 0.002 2499.6 49.6s 7.3s 96.3%
60 0.002 0.002 2397.3 61.1s 12.5s 97.5%
100 0.001 0.001 2375.7 78.3s 21.6s 97.3%
150 0.001 0.001 2374.9 102.7s 43.2s 97.2%
200 0.001 0.001 2375.2 125.3s 95.3s 100%

Input Groups LOD1

Fig. 20. Limitation in detecting finer structures. The inability to extract the
circled structure led to inconsistency in the LOD1 model.

Ablation Study. Co-LOD implementation involves various pa-
rameters and optimization items that require careful consideration,
including alcove structure area Aϵ , BBox resolution ns , number of
Rays Emitted nr , shape-scale balance weight η, and terms in Eq. (2).
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Fig. 21. The relationship between the calculation time of the co-analysis
stage and the number of segments analyzed simultaneously.

The selection of Aϵ primarily influences the detection of alcove
structures, setting the upper size limit of detectable alcoves, as
illustrated in Fig. 14. Through extensive experimentation, we have
set Aϵ to 80m2, which effectively handles the alcove structures
contained in our datasets.
The BBox resolution influences structural segmentation, which

in turn impacts LOD generation. In Fig. 15, we explored various ns
values across our dataset and introduced the Structure Detection
Rate (SDR) as our custom metric. SDR measures how accurately the
Structural Segment Generation algorithm identifies relevant struc-
tures. It is calculated as the percentage of segments generated with
the current parameter settings compared to those generated using
the optimal parameters. Our findings indicate that increasing ns
detects finer structures but also raises computational consumption
non-linearly. Therefore, we have set ns = 150 to achieve the optimal
balance between efficiency and performance.
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Fig. 22. LOD generation results by Co-LOD for Town.

The number of emitted rays nr affects structural segment gen-
eration and polygonal mesh extraction, as shown in Table 4. This
parameter is crucial for analyzing how a voxel is surrounded by
planes; fewer rays increase the likelihood of missing surrounding
planes, leading to inferior structural segmentation and mesh ex-
traction. Considering that increasing nr does not lead to non-linear
growth in computational costs, we have chosen a larger default
value (100) to enhance the robustness and HD-based evaluation.

Different values of η yield varied similarity measurements that
influence LOD hierarchy as depicted in Fig. 16. Larger value of η
prioritizes the shape and smaller one emphasizes the scale. Based
on the extensive experiments, we set η = 4.0 to align shape and
scale measurement space.
There are several optimization terms in Eq. (2) and their func-

tions should be demonstrated, which take important influence for
LOD0 generation. First, we evaluate the function of consistency
term fco that provides semantic consistency. In Fig. 17, we compare
the results with and without fco in Co-LOD. The fco suppresses the
intricate geometric details for LOD0 generation, thereby ensuring
consistency within the level. Due to the Eq. (2) contains three terms,
a reasonable assumption is to simulate the function of third term by
changing the ratio of weights for the first two terms fr and fs . In
Fig. 18, we compare the results with different weight ratios based on
Co-LOD framework. As β increases, the main structure of selected
architectural model is indeed simplified. However, the removal of
essential structural segments resulted in the introduction of random
noisy planes to close off the main structure. Overall, co-analysis
cannot be simply replaced in accurate LOD generation task. We

believe that it is a significant discovery for future research works
on architectural reconstruction.

Limitations. Co-LOD can handle curved structures, but its re-
liance on piecewise planar approximation introduces more errors
in curved areas. Tweaking Region Growing [Rabbani et al. 2006]
parameters can control the precision of surface approximation and,
consequently, the reconstruction error, as demonstrated in Fig. 19.
A reduced angle threshold enhances accuracy but also results in
longer computation times and a higher count of output faces. The
Structural Segment Generation algorithm performs well with noisy
inputs. However, due to its reliance on spatial discretization for
visibility analysis, it overlooks finer structures, as shown in Fig. 20.
Even increasing voxel density can help, the computational cost is
correspondingly increased. Especially for large-scale scenes, such
computational increase for both segment generation and co-analysis
is inevitable, as observed in Fig. 21. The nonlinear growth stems
from the co-analysis stage, mainly due to solving the optimization
equation Eq. 2. Fortunately, Co-LOD for single building provides an
potential solution to address this nonlinear growth issue. The com-
putationally expensive co-analysis can be accomplished through
pre-training on large-scale databases, enabling independent control
over the LOD generation of each building.

5 CONCLUSIONS
In this paper, we introduce Co-LOD, a novel method for controllable
LOD generation with semantic consistency. It signifies pioneering
efforts in data-driven LOD generation for urban scenes, aimed at
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Fig. 23. LOD generation results by Co-LOD for Research Center.

addressing the challenges faced by deep learning solutions in pre-
cise reconstruction and LOD control under the current insufficiency
of data. The process begins with a robust segmentation method
to extract fundamental structural units from architectural models.
Subsequently, Co-LOD employs joint structural analysis to facilitate
progressive LOD generation. This involves a detailed comparison
of segment-based similarities, establishing precise constraints that
guarantee semantic consistency across various models. Our exper-
iments validate that Co-LOD uniquely achieves LOD generation
with significant semantic consistency. Looking ahead, we plan to ex-
pand Co-LOD’s capabilities by integrating a generative framework
to enhance its completion ability. Additionally, we aim to develop
multi-resolution texture mapping for different LOD layers, which
will contribute to more realistic rendering of architectural models.
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